Green Innovation and Climate Policies

David Hémous

University of Zurich

May 2024

(ロ) (d)

医心室 医心室

 2990

While global emissions are still increasing

1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO₂) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO, includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

 Ω

イロメ イ部メ イ君メ イ君メー

Our World

Some countries are much cleaner / getting cleaner

Data source: Global Carbon Budget (2023): Population based on various sources (2023) OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO₂) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO₂ includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

• Adjusting for trade gives similar trends.

David Hémous (University of Zurich) [Green Innovation](#page-0-0) May 2024 3 / 39

 200

イロト イ母 ト イヨ ト イヨ)

How to reduce emissions?

Kayaís identity decomposes emissions in

$$
\text{Emissions} = \text{Pop} \times \frac{\text{GDP}}{\text{Pop}} \times \frac{\text{Energy}}{\text{GDP}} \times \frac{\text{Emissions}}{\text{Energy}}
$$

To reduce emissions at the lowest possible cost, one would like to:

- \triangleright improve energy-efficiency (reduce Energy / GDP);
- \triangleright make energy cleaner (reduce Emissions / Energy).
- In a broad sense, choices on the direction of technology largely explain the differences in CO2 emissions per capita between (otherwise) similar countries.

 200

DTC literature

- Initially, climate macro literature focused on models with exogenous technological progress (Nordhaus' DICE model).
	- In such framework, getting the carbon price right is often the most important policy question.
- Mounting evidence that the direction of technology is endogenous and that innovation responds to policy.
- Directed Technical Change (DTC) literature takes the endogeneity of innovation as a starting point:
	- \triangleright Policies must be designed with their consequences on innovation in mind.
	- \triangleright Clean vs dirty innovation: Acemoglu, Aghion, Bursztyn, and Hémous (2012), etc.
	- **Energy-saving vs energy-using innovation: Smulders and de Nooij** (2003), Hassler, Krusell, Olovsson (2021), etc.

 Ω

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Roadmap

1 Empirical evidence

- ² Clean vs dirty innovation
- ³ Energy using vs energy-saving innovation
- **4** Applications of DTC framework

4 日下

化重 的

 QQ

Aghion, Dechezleprêtre, Hémous, Martin and van Reenen (2016)

- Aghion, Dechezleprêtre, Hémous, Martin and van Reenen (2016) test for DTC in the car industry:
	- \triangleright Do higher gas prices lead to more clean and fewer dirty innovations?
	- In addition, they establish that there is *path-dependence* both at the firm and the country level.
- Build new patent data set on innovations in the car industry at the $firm$ level from 1978-2005 (using PATSTAT):
	- \triangleright Clean innovation = electric, hybrid and hydrogen vehicles;
	- \triangleright Dirty innovation = fossil fuel engines.
- Key: manufacturers from the car industry sell to multiple markets.
	- \blacktriangleright Hence possible to build a firm-specific fuel price.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Econometric approach

• Run panel Poisson regression:

$$
PAT_{C,it} = \exp\left(\begin{array}{c} \beta_{C,P} \ln FP_{it-2} + \beta_{C,KC} \ln K_{C,it-2} \\ + \beta_{C,KD} \ln K_{D,it-2} + \beta_{C,SC} \ln SPILL_{C,it-2} \\ + \beta_{C,SD} \ln SPILL_{D,it-2} + \eta_{Ci} + \delta_t \end{array} \right) + u_{C,it}
$$

- \triangleright PAT_{C, it} is the flow of clean patents filed by firm i in year t;
- \blacktriangleright FP_{it} the fuel price for firm i
- $K_{C, it}$: the stock of clean patents of the firm.
- \triangleright SPILL_{C it}: the stock of clean patents in the "countries" of the firm (a measure of spillovers).
- \blacktriangleright η_{Ci} is a firm fixed effect and δ_t year fixed effects.
- Add controls at the firm level: GDP per capita, electricity price...
- And similarly for dirty patents $PAT_{D,it}$.

 Ω

イロト イ押ト イヨト イヨト

Firm specific prices and spillovers

 \bullet Build a firm *i's* specific fuel price:

$$
FP_{i,t} = \sum_{c} \omega_{i,c} FP_{c,t}
$$

- \blacktriangleright $\mathsf{FP}_{c,t}$ is the fuel price in a country (data on 25 countries)
- \blacktriangleright $\omega_{i,c}$ is the weight of country *c* for firm *i*, computed using a firm's patent history pre-sample (as a proxy for firm's market shares) adjusted by GDP_c .
- \triangleright Use fuel tax instead of fuel price in robustness checks.
- Similarly build firm-specific spillovers by combining country level stocks with the pre-sample distribution of firms' inventors.

 200

Path dependence and DTC

	DEPENDENT VARIABLE: CLEAN PATENTS			DEPENDENT VARIABLE: DIRTY PATENTS		
	(1)	(2)	(3)	(4)	(5)	(6)
Fuel price $(\ln FP)$.970*** (.374)	.962** (.379)	$.843**$ (.366)	$-.565***$ (.146)	$-.553***$ (.205)	$-.551***$ (.194)
R&D subsidies (ln R&D)		$-.005$ (.025)	$-.006$ (.024)		$-.006$ (.021)	$-.005$ (.020)
Emission regulation			$-.008$ (.149)			.04 (.120)
Clean spillover						
$(\ln$ SPILL _c $)$	$.268***$ (.076)	.301*** (.087)	$.266***$ (.088)	$-.093*$ (.048)	$-.078$ (.067)	$-.089$ (.063)
Dirty spillover						
(ln SPILL _p)	$-.168**$ (.085)	$-.207**$ (.098)	$-.165*$ (.098)	$.151**$ (.064)	.132 (.082)	$.138*$ (.077)
Own stock clean (ln K_c)	$.306***$ (.026)	$.320***$ (.027)	.293*** (.025)	$-.002$ (.022)	$-.004$ (.022)	.021 (.020)
Own stock dirty ($\ln K_D$)	.139*** (.017)	$.135***$ (.017)	.138*** (.017)	.557*** (.031)	.549*** (.022)	.539*** (.017)
Observations	68,240	68,240	68,240	68,240	68,240	68,240
Firms	3.412	3.412	3.412	3.412	3.412	3.412

TABLE 3 **REGRESSIONS OF CLEAN AND DIRTY PATENTS**

NOTE.—Standard errors are clustered at the firm level. Estimation is by the CFX method. All regressions include controls for GDP per capita, year dummies, fixed effects, and three dummies for no clean knowledge, no dirty knowledge, and no dirty or clean knowledge (in the previous year). Fuel price is the tax-fuel price faced. R&D subsidies are public R&D expenditures in energy-efficient transportation. Emissions regulations are maximum levels of issions for pollutants from new automobiles

David Hémous (University of Zurich) [Green Innovation](#page-0-0) May 2024 10 / 39

 Ω

Further results

- Separate dirty patents into grey patents (which improves energy efficiency) and purely dirty patents (which do not):
	- \triangleright Effect on grey is positive non-significant (elasticity below 0.3).
	- Effect on purely is negative with larger magnitude (around -0.8).
- Clean cars use electricity as an input: high electricity prices discourage clean innovation.
- Aghion, BÈnabou, Martin, and Roulet (2023) use a similar framework to test the effect of consumers' environmental preferences and competition.
	- \triangleright Consumers' pro-environmental preferences lead to more clean innovation particularly where the industry is more competitive.

 Ω

イロト イ押ト イヨト イヨト

Calel and Dechezleprêtre (2016)

- · Calel and Dechezleprêtre (2016): EU-ETS (European cap-and-trade system) increased green innovation by 10%
	- \triangleright Only sufficiently large establishment are subject to EU-ETS;
	- \triangleright They compare firms subject to EU-ETS with similar firms not subject to EU-ETS.

 Ω

Dugoua (2022)

- In the 80s, CFC emissions were causing a reduction in the ozone layer.
- Countries reached an agreement at Montreal in 1987 to progressively reduce CFCs.
- Dugoua (2022) compares the evolution of patents and scientific articles on CFC substitutes versus other similar chemicals. $+$

FIGURE 4

Pre-Trends in Counts of Documents Mentioning CFC Substitutes and HAPs

Note: The graphs display the pre-trends for the treated group (CFC substitutes) and the control group constructed using a subset of the HAP molecules that have counts and pre-trends closest to the average CFC substitutes.

 Ω

イロト イ押 トイラト イラト

Roadmap

- **1** Empirical evidence
- ² Clean vs dirty innovation
- ³ Energy using vs energy-saving innovation
- **4** Applications of DTC framework

 \leftarrow \Box

化医头头

 QQ

Acemoglu, Aghion, Bursztyn and Hémous (2012, AABH)

- AABH provide the first DTC model to study the development of clean technologies that substitute for dirty ones.
	- \triangleright Electric vs fossil fuel vehicles; renewables vs fossil fuel power plants.
- How does the endogeneity of innovation affect optimal climate policy?

4 D F

つひひ

Production

• Final good Y_t produced competitively with a clean intermediate input Y_{ct} , and a dirty input Y_{dt}

$$
Y_t = \left[Y_{ct}^{\frac{\varepsilon-1}{\varepsilon}} + Y_{dt}^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}}
$$

Assume $\varepsilon > 1$, the two inputs are substitute.

• For $j \in \{c, d\}$, input Y_{it} produced competitively with labor L_{it} and a continuum of machines x_{ijt} :

$$
Y_{jt}=L_{jt}^{1-\alpha}\int_0^1A_{jit}^{1-\alpha}x_{jit}^{\alpha}di.
$$

- \blacktriangleright Machines produced monopolistically with the final good (1 for 1).
- Labor market clearing $L_{ct} + L_{dt} = L$.
- \bullet Production of dirty input depletes environmental stock S :

$$
S_{t+1} = -\xi Y_{dt} + (1+\delta) S_t \text{ if } S \in (0,\bar{S}). \tag{1}
$$

.

An increase in A_{ct}/A_{dt} reduces emissions[.](#page-14-0) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 OQ

Innovation technology

- At the beginning of every period scientists (of mass $S = 1$) work to innovate in the clean or the dirty sector.
	- \triangleright Given sector choice, each randomly allocated to one machine in their target sector (not essential).
- Every scientist has a probability η_j of success (without congestion).
	- **►** if successful, proportional improvement in quality by $\gamma > 0$ and the scientist gets monopoly rights for one period,

$$
A_{jit} = (1+\gamma) A_{ji(t-1)}.
$$

- \triangleright otherwise monopoly rights in that machine randomly allocated to an entrepreneur who uses technology $A_{jit} = A_{ji(t-1)}$.
- Therefore, if s_{it} scientists innovate in j, the law of motion of quality of input in sector $j \in \{c, d\}$ is:

$$
A_{jt} = \left(1 + \gamma \eta_j s_{jt}\right) A_{jt-1}.
$$

Assumption that monopoly rights only last for one period is not essential but simplifies the analysis. イロト イ部 トイヨ トイヨト - 3

 Ω

Innovation allocation

I Innovators target the sector with the highest expected profits Π_{it} :

$$
\frac{\Pi_{ct}}{\Pi_{dt}} = \frac{\eta_c}{\eta_d} \frac{1 + \gamma \eta_d s_{dt}}{1 + \gamma \eta_c s_{ct}} \frac{p_{ct} Y_{ct}}{p_{dt} Y_{dt}}
$$
\n
$$
= \frac{\eta_c}{\eta_d} \underbrace{\left(\frac{p_{ct}}{p_{dt}}\right)^{\frac{1}{1-\alpha}}}_{\text{price effect}} \underbrace{\frac{L_{ct}}{L_{dt}}}_{\text{market size effect}} \underbrace{\frac{A_{ct-1}}{A_{dt-1}}}_{\text{direct productivity effect}}
$$
\n(2)

- \triangleright Because of the Cobb-Douglas structure, monopolist earn a constant share of their sector's revenues.
- \triangleright Relative revenues can be decomposed into relative prices, labor, and technologies.
- \triangleright Relative prices and labor themselves depend on technologies.

 200

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

First lesson: path dependence

• Therefore, we can write the ratio of expected profits as:

$$
\frac{\Pi_{ct}}{\Pi_{dt}} = \frac{\eta_c}{\eta_d} \left(\frac{1 + \gamma \eta_c s_{ct}}{1 + \gamma \eta_d s_{dt}} \right)^{\sigma - 2} \left(\frac{A_{ct-1}}{A_{dt-1}} \right)^{\sigma - 1}
$$
\n(3)

\nwith $\sigma - 1 \equiv (1 - \alpha) (\varepsilon - 1)$

\n(4)

Innovation allocation is a corner solution if $A_{c(t-1)}/A_{d(t-1)}$ is sufficiently large or small.

- **•** There is path dependence in innovation: innovation favors the relatively more advanced sector.
	- \blacktriangleright If A_{d0} is sufficiently advanced relative to A_{c0} , then innovation is entirely directed towards dirty technologies in laissez-faire.
- In laissez-faire, the economy does NOT converge toward a BGP.

つへへ

→ 何 ▶ → 曰 ▶ → 曰 ▶

Second lesson: policy can redirect innovation

- Subsidy to clean innovation q_t directly boosts the return to innovating in clean.
- A carbon tax *τ* reduces the price of the dirty input.

$$
\frac{\Pi_{ct}}{\Pi_{dt}} = (1+q_t) \frac{\eta_c}{\eta_d} \left(\frac{p_{ct}}{\hat{p}_{dt}}\right)^{\frac{1}{1-\alpha}} \frac{L_{ct}}{L_{dt}} \frac{A_{ct-1}}{A_{dt-1}}
$$
\n
$$
= (1+\tau_t)^{\varepsilon} (1+q_t) \frac{\eta_c}{\eta_d} \left(\frac{1+\gamma \eta_c s_{ct}}{1+\gamma \eta_d s_{dt}}\right)^{\sigma-2} \left(\frac{A_{ct-1}}{A_{dt-1}}\right)^{\sigma-1}
$$

- A sufficiently large subsidy q_t ensures that innovation occurs in the clean sector.
	- If subsidy is maintained for a sufficiently long period, A_{ct} will catch-up with and eventually overtake A_{dt} ;
	- \triangleright afterwards market forces will push towards clean innovations.
- \bullet A carbon tax can also redirect innovation but it will also affect production.

 Ω

イロト イ押 トイラト イラト

Third lesson: redirecting growth and costs of delay

• Growth follows

$$
g_t = \frac{p_{ct} Y_{ct}}{Y_t} \gamma \eta_c s_{ct} + \frac{p_{dt} Y_{dt}}{Y_t} \gamma \eta_d s_{dt}
$$

- \triangleright Growth is higher when innovation targets the more advanced sector.
- Intuitively: the two inputs are substitute, re-inventing how to produce energy is useless (except for the climate externality).
- \bullet The energy transition is costly: growth is low when A_{ct} is catching up with A_{dt} .
- Third lesson delaying the intervention is costly: if the social planner waits before redirecting innovation, the cost of intervention increases.

 200

Fourth lesson: two instruments

- 4th lesson: Optimal policy involves both a carbon tax and research subsidies.
- Social planner is more forward looking than the market:
	- \triangleright here because of 1 period monopoly rights but more generally patents expire at some point;
	- \rightarrow + "building on the shoulders-of-giants" externality.
- This is true for both clean and dirty but we need to transition away from dirty towards clean:
	- \blacktriangleright High share of social value from improving solar panels today comes from getting better social panels tomorrow. Not captured by innovator
	- \blacktriangleright High share of social value from improving natural gas power today comes from the profits today. Captured by the innovator.
	- \triangleright Today's dirty innovations will be useless in 50 years while today's clean innovation will be the backbone of the economy.
- Share of private value to social value lower for clean technology: Market failure.
	- \triangleright \triangleright \triangleright Even with infinite patents, even with Pigo[via](#page-20-0)[n t](#page-22-0)a[xa](#page-21-0)[ti](#page-22-0)[o](#page-12-0)[n.](#page-13-0)

 Ω

Roadmap

- **1** Empirical evidence
- ² Clean vs dirty innovation
- ³ Energy using vs energy-saving innovation
- **4** Applications of DTC framework

 \leftarrow \Box

化医头头

 QQ

Energy saving technological change

- Alternatively, one can think of reducing the use of energy.
	- \triangleright Models of DTC between energy-saving vs energy-using innovation.
	- \triangleright Decoupling between GDP and energy use is happening.

4 D F

 Ω

Substitution between energy and other inputs

FIG. 1.-Fossil prices (in chained 2005 US dollars) and the fossil energy share of income. source:Hassler, Krusell and Olovsson (2021)

- In the short-run, energy seems Leontieff with other inputs;
- but in the long-run, the energy share is roughly constant (Cobb-Douglas).

 \leftarrow

 Ω

Macroevidence of DTC

• Hassler, Krusell and Olovsson (2021) assume

$$
Y_t = \left[\left(A_{Pt} K_t^{\alpha} L_t^{1-\alpha} \right)^{\frac{\varepsilon-1}{\varepsilon}} + \left(A_{Et} E_t \right)^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}} \text{ with } \varepsilon < 1.
$$

 \triangleright With ϵ < 1, A_{Ft} is energy-saving and an increase in A_{Ft}/A_{Pt} reduces the relative demand for energy (vs K and L).

Simple model of energy-saving innovation

• Keep the same structure as in AABH (Hémous and Olsen, 2021):

$$
Y\left(t\right)=\left[Y_{P}\left(t\right)^{\frac{\varepsilon-1}{\varepsilon}}+Y_{E}\left(t\right)^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}\text{ with }\varepsilon<1.
$$

• Production input Y_{Pt} is produced with labor and a continuum of machines xp_{it} :

$$
Y_{Pt}=L_t^{1-\alpha}\int_0^1A_{Pit}^{1-\alpha}x_{Pit}^{\alpha}di.
$$

• Energy-services Y_F are similarly produced with energy E_t and a continuum of machines $x_{F i t}$:

$$
Y_{Et}=E_t^{1-\alpha}\int_0^1A_{E,it}^{1-\alpha}x_{E,it}^{\alpha}di.
$$

Same innovation technology as in AABH.

Innovation allocation

• Innovators target the sector with the highest expected profits:

$$
\frac{\Pi_{Pt}}{\Pi_{Et}} = \frac{\eta_P (1 + \gamma \eta s_{Et})}{\eta_E (1 + \gamma \eta s_{Pt})} \frac{p_{Pt} Y_{Pt}}{p_{Et} Y_{Et}} = \frac{\eta_P}{\eta_E} \left(\frac{p_{Pt}}{p_{Et}}\right)^{\frac{1}{1 - \alpha}} \frac{L_t}{E_t} \frac{A_{Pt-1}}{A_{Et-1}}
$$
\n
$$
= \frac{\eta_P (1 + \gamma \eta s_{Et})}{\eta_E (1 + \gamma \eta s_{Pt})} \left(\frac{L_t}{E_t} \frac{A_{Pt}}{A_{Et}}\right)^{\frac{\sigma - 1}{\sigma}}
$$

- With $\varepsilon < 1$, $\sigma < 1$: the price effect now dominates and innovation favors the more backward technology adjusted for factor supply:
	- An oil shock (i.e. a decrease in E_t) increases energy-saving innovation;
	- \triangleright A tightening cap on energy, or resource exhaustion (i.e. a decreases in E_t over time) leads to permanently more energy-saving innovation;
	- \triangleright The economy converges toward a BGP where $A_{Pt}L_t$ and $A_{Ft}E_t$ grow at the same rate.

 Ω

KONKAPIK KENYEN E

Consequences of a BGP

On a BGP:

$$
\frac{\Pi_{Pt}}{\Pi_{Et}} = 1 \Rightarrow \frac{p_{Et}Y_{Et}}{p_{Pt}Y_{Pt}} = \frac{\eta_P \left(1 + \gamma \eta s_{Et}\right)}{\eta_E \left(1 + \gamma \eta s_{Pt}\right)} \approx \frac{\eta_P}{\eta_E}
$$

- \triangleright The energy share is (nearly) constant in the long-run: the economy looks Cobb-Douglas in the long-run.
- With climate externality, both the social planner solution and the decentralized economy converge toward a BGP.
	- **Carbon tax can ensure that** E_t **decreases at the right pace;**
	- \blacktriangleright The asymptotic innovation allocation is the same for the market and the planner: $g_L + g_{A_P} = g_E + g_{A_E}$
- Role for energy-saving research subsidies is much weaker;
	- \triangleright No guarantee that the optimal policy involves a subsidy to energy-saving innovation.

 200

→ 何 ト 4 ヨ ト 4 ヨ

4 D F

Casey (2024)

- Can we just assume that energy is Cobb-Douglas then to evaluate climate policy?
- Casey (2024) says no:
	- \triangleright Such an approximation leads to significantly overestimate the emission reductions associated with a given carbon tax along the transition.

4 0 8

 200

Roadmap

- **1** Empirical evidence
- ² Clean vs dirty innovation
- ³ Energy using vs energy-saving innovation
- **4** Applications of DTC framework

4.0.3

 QQ

不重 医牙

Hémous (2016)

- Climate negotiations have had limited results: no satisfactory global agreement in sight.
	- \triangleright Countries have started to move to unilateral policies, with, more and more, call for "green" protectionism.
	- \triangleright Can unilateral policies from a subset of committed countries ensure sustainable growth? Is protectionism a necessary condition?
- 2 countries (North and South):
	- \triangleright North may undertake unilateral policies.
- 2 tradeable sectors: energy-intensive (polluting) and non-energy intensive (non-polluting).
	- \triangleright Energy-intensive good can be produced in a clean or dirty way.

Key mechanisms

- Local innovation, directed towards non-polluting sector, clean or dirty technologies.
- Comparative advantage depends on:
	- \triangleright relative productivities in polluting versus non-polluting sector.
	- \blacktriangleright policies: a carbon tax tends to reduce the compartive advantage in the polluting good.
- Incentive to innovate in a (sub) sector proportional to the total revenue generated by the (sub)sector.
	- \triangleright Path dependence in clean versus dirty innovation as in AABH.
	- \triangleright Amplification of comparative advantages: as a country exports a good it has a larger market in that good and tends to innovate more there.
	- \triangleright Potentially mitigated by international knowledge spillovers.

 Ω

⊀ 御 ⊁ (≮ 唐 ≯ (≮ 唐 ≯

4 0 8

Policies' effects

- Static pollution haven effect:
	- \triangleright A carbon tax in the North leads to a relocation of production in the South.
	- \triangleright Emissions decrease in the North but increase in the South.
- Dynamic pollution haven effect:
	- \triangleright The relocation of the energy-intensive good to the South favors innovation in the dirty sector.
	- \triangleright With a small market, clean innovation in the North may fail to take up.
	- \blacktriangleright Global emissions may actually increase!
- Green industrial policy: combine subsidies in green technologies with a trade tax in the North.
	- \triangleright The North can develop clean technologies without losing the energy-intensive good production to the South.
	- \triangleright Eventually emissions decrease in both countries;
	- \triangleright either because the North exports the energy-intensive good (reversal of comparative advantage);
	- \triangleright or because the South also switch to clean innovation because of knowledge spillovers. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

David Hémous (University of Zurich) [Green Innovation](#page-0-0) Green Innovation May 2024 34 / 39

 QQ

Acemoglu, Aghion, Barrage and Hémous (2023)

Model

- Build a model with 3 sources of energy: coal based, natural gas based and green.
	- \triangleright Natural gas pollutes less than coal.
	- \triangleright Natural gas and coal both require a resource in infinite supply but costly to extract.
	- \triangleright Shale gas boom: shock to the productivity of natural gas extraction.
- We show that innovation gets redirected away from green toward fossil fuel electricity.
- Calibrate to the US electricity sector.

 Ω

Laissez faire results

• Effect of one-time 50% increase in gas extraction technology:

David Hémous (University of Zurich) [Green Innovation](#page-0-0) Green Innovation May 2024 37 / 39

4 0 8 ∢ 母 \sim ∢ 三 下 \mathcal{A}

 200

Þ

Some other applications

- Acemoglu, Akcigit, Hanley and Kerr (2016): merge AABH with a firm-dynamics model.
	- \triangleright Calibrate the model using firm-level data from the energy sector.
	- \triangleright Quantitative results confirm the role of research subsidies on top of carbon taxation.
- Fried (2018) uses the oil shocks of the 1970s to calibrate a DTC model which combines clean, dirty and energy saving innovation and then use the model to simulate climate policy.
- Stern, Pezzey and Lu (2020) explain the Industrial Revolution as resulting from the transition from wood-power to coal-power.
	- \triangleright Model similar to the energy-saving vs energy-using case.
- Aghion, Barrage, Hémous and Liu (2024) model energy transition along the supply chain (different innovation model):
	- \triangleright Focus on coordination issues in green innovation across different sectors;
	- \triangleright Argue for sector-specific clean innovation subsidies.
- Lit review in Hémous and Olsen (2021).

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Conclusion

- Innovation is very endogenous and climate policies must take this into account:
- A carbon tax is not enough, subsidies to clean research are necessary;
	- \triangleright but for energy-saving innovation, carbon taxes can do the heavy lifting.
- The cost of delaying intervention are large;
- A unilateral policy should focus on developing clean technologies;
- Intermediate technologies (such as natural gas) may backfire.

 200