Globalization and the Environment

Joseph S. Shapiro UC Berkeley and NBER

May 2024

Globalization Important for the Environment

- Important
 - Trade, foreign investment drive environmental outcomes
 - Climate change, species extinction, air/water pollution, groundwater exploitation
 - International air/sea fastest growing broad sector for CO₂
 - Trade provides carrots and sticks
- Policy debates
 - Carbon border adjustments
 - Climate clubs
 - Climate finance
 - Trade policy for solar panels, electric vehicles, batteries, rare earth minerals
 - Inflation Reduction Act / friendshoring
- Research
 - Burgeoning combination of questions, policies, theory, methods, data

Globalization and the Environment: Research Questions

- How do globalization and international economic policy affect the environment?
 - How do tariffs affect greenhouse gas emissions?
 - Does globalization cause a "race to the bottom" in environmental policy?
- How do environmental goods and policies affect globalization?
 - When does environmental policy constitute protectionism?
 - How do carbon border adjustments, climate clubs affect the economy?
- Intellectual arbitrage between international and environmental economics?
 - Can trade data/models/methods help measure marginal cost of abating pollution?
 - How do environmental goods affect comparative advantage?

Agenda for Today

- Stylized facts
- Summarize the subfield
- Toy model
- Policy
- Conclusions

Stylized Fact #1: Productive Firms Have Lower Pollution Intensity

Source: Shapiro and Walker, 2018, "Why is Pollution from US Manufacturing Declining?" American Economic Review

Stylized Fact #2: Dirty Industries are More Exposed to Trade

	Direct Emission Rate		Total Emission Rate		Total Output	Output Traded	Lipstream-
	CO ₂	NOx	CO ₂	NOx	(\$trillion)	(%)	ness
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel A. Cleanest industries							
Real estate activities	8	0.0	84	0.3	\$7.9	0.6%	1.5
Financial intermediation	11	0.0	101	0.3	\$7.2	7.0%	2.3
Equipment & machine rentals	28	0.1	166	0.6	\$10.0	8.6%	2.7
Wholesale trade	25	0.1	201	0.8	\$5.9	7.9%	2.2
Retail fuel; vehicle repair, sales	34	0.1	186	0.6	\$1.2	1.2%	1.9
Mean of cleanest 5 industries	21	0.1	148	0.5	\$6.4	5.1%	2.1
Panel B. Dirtiest industries							
Coke, oil refining, nuclear fuel	359	0.5	984	2.4	\$2.5	22.9%	2.7
Air transport	1,227	4.8	1,613	6.0	\$0.6	31.0%	2.1
Water transport	1,147	12.7	1,681	16.0	\$0.6	40.6%	2.9
Other non-metallic mineral	1,332	4.0	2,291	6.4	\$1.3	11.2%	2.6
Electricity, gas, water supply	3,295	5.6	4,324	7.8	\$3.4	2.1%	2.8
Mean of dirtiest 5 industries	1,472	5.5	2,179	7.7	\$1.7	21.5%	2.6

Table 1: Cleanest and Dirtiest Industries in Global Data

Source: Copeland, Shapiro, and Taylor, 2022, "Globalization and the Environment," Handbook of International Economics

Stylized Fact #3: Dirty Industries Face Lower Trade Protection

Panel E. Actual global non-tariff barriers

Source: Shapiro, 2021, "The Environmental Bias of Trade Policy," Quarterly Journal of Economics

Stylized Fact #4: Emissions Growth is from Non-Rich Countries

CO₂ Emissions

Source: Copeland, Shapiro, and Taylor, 2022. "Globalization and the Environment," Handbook of International Economics

Stylized Fact #5: Int'l Trade Accounts for Over a Fourth of Emissions

Source: Copeland, Shapiro, and Taylor, 2022, "Globalization and the Environment," Handbook of International Economics

Stylized Fact #6: Technique Exceeds Composition in Time Series (1/2)

Figure 3: Nitrogen Oxides Emissions From United States Manufacturing

Source: Shapiro and Walker, 2018, "Why is Pollution from US Manufacturing Declining?" American Economic Review

Stylized Fact #6: Technique Exceeds Composition in Time Series (2/2)

Source: Copeland, Shapiro, and Taylor, 2022, "Globalization and the Environment," Handbook of International Economics

Stylized Fact #7: Global Problems Need Global Solutions

Agenda for Today

- Stylized facts
- Summarize the subfield
- Toy Model
- Policy
- Conclusions

Trade and Environment Research: Classic

- 1970s/80s: highly stylized—Pethig, Markusen
- 1990s: NAFTA, Grossman and Krueger (QJE 1995)
 - Environmental Kuznets Curve
 - Scale, composition, technique
- 1990s/2000s: Stylized Models, Reduced-form Regressions
 - Copeland & Taylor (2005), Trade and the Environment
 - Frankel & Rose (REStat 2005), "Is trade good or bad for the environment"

Globalization and Environment Research: Current (1/3)

Organized by method, approach:

- Quantitative trade models
 - Nordhaus (AER 2015), "Climate Clubs"
 - Shapiro (AEJ:Policy 2016), "Trade Costs, CO2, and the Environment"
 - Farrokhi & Lashkaripour (2024), "Can Trade Policy Mitigate Climate Change?"
- Political economy, trade policy
 - Shapiro (2021), "The Environmental Bias of Trade Policy"
 - Hsiao (2024) "Coordination and Commitment in International Climate Action"
- Dynamic quantitative spatial equilibrium models
 - Balboni (2024), "In Harm's Way?"
 - Rossi-Hansberg et al. (2015, 2021, 2024, ...)

Globalization and Environment Research: Current (2/3)

Organized by method, approach:

Multinational production

- Castro-Vincenzi (2024), "Climate Hazards and Resilience in the Global Car Industry"
- Garcia-Lembergman et al. (2024), "The Carbon Footprint of Multinational Production"

• Agriculture

- Costinot, Donaldson, and Smith (JPE 2016), "Evolving Comparative Advantage"
- Carleton, Crews, Nath (2024), "Agriculture, Trade, and Spatial Efficiency..."
- Farrokhi et al. (2024), "Deforestation: A Global and Dynamic Perspective"
- Dominguez-lino (2024), "Efficiency and Redistribution in Environmental Policy"

Industry studies

- Arkolakis & Walsh (2024), "Clean Growth"
- Allcott, Shapiro, & Tintelnot (2024), "Buy American"

Globalization and Environment Research: Current (3/3)

Organized by question:

- How can trade/investment policy support climate policy?
 - Nordhaus (2015), Shapiro (2016, 2021), Garcia-Lembergman et al. (2024), Farrokhi & Lashkaripour (2024), Hsiao (2024)
- What are spatial impacts of climate change, how should policy reflect them?
 - Balboni (2024), Rossi-Hansberg et al. (2021, 2024, ...)
- How does trade affect adaptation to climate change?
 - Costinot, Donaldson, & Smith (2016),
- How does trade, int'l policy affect other environmental goods?
 - Carleton, Crews, Nath (2024), Dominguez-lino (2024), Farrokhi et al. (2024)

Agenda for Today

- Stylized facts
- Summarize the subfield
- Toy model
- Policy
- Conclusions

Toy Model (ACR)

Preferences:

$$U_j = \left[\sum_{i=1}^n q_{ij}^{(\sigma-1)/\sigma}
ight]^{\sigma/(\sigma-1)}$$

$$P_j = \left[\sum_{i=1}^n (w_i \tau_{ij})^{1-\sigma}\right]^{1/(1-\sigma)}$$

Trade:

 $X_{ij} = (w_i \tau_{ij} / P_j)^{1-\sigma} Y_j$

Equilibrium:

 $Y_i = w_i L_i$

Welfare:

$$\hat{W}_j = \hat{\lambda}_{jj}^{1/(1-\sigma)}$$

Toy Model: Environmental Extensions

- Industries
 - Dirty versus clean
 - Input-output: energy goods upstream
- Factors
 - Natural resources: energy, water, land
 - Complementarity: dirty industries capital-intensive
- Policy
 - Pollution taxes, standards
 - Tariffs, NTBs, investment subsidies

• Other assumptions

- Trade imbalances: production v. consumption emissions
- Market structure: polluting industries concentrated
- Economic geography: spatially resolved environmental goods

Agenda for Today

- Stylized facts
- Summarize the subfield
- Toy model
- Policy
- Conclusions

Carbon Border Adjustments: Estimates With All Countries

	Non-Cooperative Border Taxes			Cooperativ	Cooperative Carbon Taxes			
Country	$\Delta \operatorname{CO}_2$	ΔV	ΔW	$\Delta \operatorname{CO}_2$	ΔV	ΔW		
EU	0.7%	-1.2%	-1.3%	-9.2%	0.0%	2.0%		
BRA	-6.0%	-1.3%	-1.3%	-70.7%	-1.3%	-0.8%		
CHN	3.0%	-1.0%	-1.0%	-69.3%	-1.3%	-0.9%		
IND	1.1%	-4.4%	-4.4%	-76.0%	-2.6%	-2.1%		
JPN	3.4%	-0.9%	-0.9%	-23.1%	-0.2%	1.5%		
MEX	-1.6%	-3.2%	-3.2%	-79.5%	-0.6%	-0.4%		
USA	1.3%	-1.7%	-1.7%	-48.2%	-0.3%	0.3%		
Global	-0.6%	-1.7%	-1.7%	-61.0%	-0.6%	0.4%		

Source: Farrokhi & Lashkaripour, 2022, "Can Trade Policy Mitigate Climate Change," Mimeo

Carbon Border Adjustments: Estimates With OECD v. Brazilian Steel

	First Best	BCA	Voluntary $f = 0$	$\begin{array}{l} \text{Certification} \\ f=f^* \end{array}$	
Welfare					
Gains in M USD	. 1212	714	692	866	
% of First Best Gains	100	58.9	58.4	71.5	
Emissions					
Reduction in Mt	. 24.4	5.6	6.3	11.1	

Table 2: Emission and Welfare Effects from Environmental Trade Policies

Note: All gains are calculated relative to a unilateral domestic carbon tax in the OECD without border adjustments. First best is a global carbon emissions tax. f is a tax on certification, with f^* denoting the optimum certification tax.

Source: Cicala, Hemous, Olsen, 2023, "Adverse Selection as a Policy Instrument," Mimeo

Climate Clubs

FIGURE 3. NUMBER OF PARTICIPATING REGIONS BY INTERNATIONAL TARGET CARBON PRICE AND TARIFF RATE Source: Nordhaus. 2015. "Climate Clubs." American Economic Review

Environmental Bias of Trade Policy

Multinational Production (MP)

Source: Garcia-Lembergman, Ramondo, Rodriguez-Clare, Shapiro, 2023, "The Carbon Footprint of Multinational Production, " Mimeo

Multinational Production (MP)

Tenova (Italy): mini mill

Kunming Iron & Steel (China): integrated

Vietnam steel corporation (Vietnam)

Source: Garcia-Lembergman, Ramondo, Rodriguez-Clare, Shapiro, 2023, "The Carbon Footprint of Multinational Production," Mimeo

MP: Cleaner Home Countries Have Cleaner Affiliates

Firm f, home country i, host country I, industry s. E Emissions. Y Revenue

$$\log\left(\frac{\mathcal{E}_{fi,l,s}}{Y_{fi,l,s}}\right)^{CDP,Orbis} = \beta_1 \log\left(\frac{\mathcal{E}_i}{Y_i}\right)^{WIOD} + X'_{f,l}\gamma + \delta_{l,s} + \epsilon_{fi,l,s}$$

Dependent variable:	Log firm CO ₂ rate					
Home log CO ₂ rate	0.96*** (0.24)	1.07*** (0.22)	0.56* (0.30)	0.63** (0.25)	0.63** (0.23)	0.60** (0.29)
Host log CO ₂ rate	0.89*** (0.09)	0.86*** (0.09)				
Firm log revenues						-0.48*** (0.08)
Observations	4,833	4,833	4,833	4,833	4,833	4,833
R-squared	0.05	0.24	0.28	0.48	0.63	0.70
# host countries	42	42	42	42	42	42
# home countries	32	32	32	32	32	32
Industry FE	no	yes	no	yes	-	-
Host country FE	no	no	yes	yes	-	-
Industry x host country FE	no	no	no	no	yes	yes

Multinational Production and Trade Important for Dirty Industries

Source: Garcia-Lembergman, Ramondo, Rodriguez-Clare, Shapiro, 2023, "The Carbon Footprint of Multinational Production, " Mimeo

MP: Carbon Accounting with Multinational Production

Source: Garcia-Lembergman, Ramondo, Rodriguez-Clare, Shapiro, 2023, "The Carbon Footprint of Multinational Production, " Mimeo

MP: Carbon Accounting: Allocating Emissions

$$\mathcal{E}_{l}^{P} = \sum_{hi,jn,ks} \mathcal{E}_{hi,jln,ks} \quad \text{Production}$$

$$\mathcal{E}_{n}^{C} = \sum_{hi,jl,ks} \mathcal{E}_{hi,jln,ks} \quad \text{Consumption}$$

$$\mathcal{E}_{j}^{M} = \sum_{hi,ln,ks} \mathcal{E}_{hi,jln,ks} \quad \text{Mining}$$

$$\mathcal{E}_{i}^{O,P} = \sum_{h,jln,ks} \mathcal{E}_{hi,jln,ks} \quad \text{Ownership-Production}$$

$$\mathcal{E}_{h}^{O,M} = \sum_{i,jln,ks} \mathcal{E}_{hi,jln,ks} \quad \text{Ownership-Mining}$$

h, i = Country of ownership for inputs, outputs; j, l = Country of production for inputs, outputs n = Country of consumption; k, s = Industry for inputs, outputs

MP: Carbon Accounting, Selected Countries

Source: Garcia-Lembergman, Ramondo, Rodriguez-Clare, Shapiro, 2023, "The Carbon Footprint of Multinational Production, " Mimeo

Agenda for Today

- Stylized facts
- Summarize the subfield
- Toy model
- Policy
- Conclusions

Conclusions

- Stylized facts, research frontier, adaptable models, policy impact
- Takeaways
 - Globalization important to environment
 - Enviroment important to globalization
 - Research important to policy