Adrien Bilal Harvard University

IEA lectures on Environmental Economics Lecture 1: The Cost of Climate Change

Introduction

- The planet is warming and the climate is changing
- What does the economy react to climate change?
- Today: the macroeconomics of climate change
 - Why is the climate changing?
 - Framework to trade off energy and climate damages
 - Key concept: the Social Cost of Carbon
 - Quantify the Social Cost of Carbon

Cheap Energy Has Been Critical for Growth...

Figure 1. Annual energy consumption per head (megajoules) in England and Wales 1561–1570 to 1850–1859 and in Italy 1861–

Cheap Energy Has Been Critical for Growth...

- Cheap coal was instrumental to jump-start the Industrial Revolution
 - Before that main source of energy was draught animals, human-power and firewood
- Since then fossil fuels have provided an extremely cheap source of energy
 - Energy in 1 gallon of gas (\$4) = Energy from 100 people working all day (\$18,000)
 - Construction, transportation, industry, heating, cooling

We have Burned Fossil Fuels For A While

1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO_2) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO_2 includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

CARBON DIOXIDE OVER 800,000 YEARS

We have Burned Fossil Fuels For A While

1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO_2) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO_2 includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

Carbon concentration +50% in last 200 years

CARBON DIOXIDE OVER 800,000 YEARS

So What?

The Greenhouse Effect

The Greenhouse Effect

Energy from the sun warms Earth

Some escapes back into space

Earth is about 60°F. Without the atmosphere it would be 0°F.

Source: climate central

How much each human-caused greenhouse gas contributes to total emissions around the globe.

This is in mass, not warming potential Methane responsible of 30% of warming!

The Planet is Warming

Atmospheric Carbon Dioxide

Some History of Temperature

Contraction of the second

What Do Global Temperatures Do?

Global Temperatures Can Be Misleading

- Global mean temperature includes ocean surface temperature
 - Ocean warm much less (and more slowly) than land
- World is on track to warm by 3-4°C (7°F) by 2100
- For 4°C (7°F) of global warming, land will warm by 8°C (14°F) on average
 - Very different in different places
 - Regions closer to poles warm more than average, tropics less than average
 - US "only" 6°C (10°F) of warming
- Average warming implies tough extremes, e.g. in Cambridge MA
 - Summer temperatures increase by 5°C (10°F)
 - 1 month with temperatures above 35°C (95°F)
 - + 2 months similar to hottest/most humid days in parts of Louisiana today (serious health risks)

Change in Extreme Heat Around the World

Increase in number of days above 95F/35C in a year by 2100 under RCP8.5. Source: Climate Impact Lab

Is Climate Change A Big Deal?

The Effects of Rising Temperatures

- Crop yields fall
- Overall labor productivity falls
- Mortality rises
- Sea level rises
- More hurricanes/more powerful
- Larger effects in lower-income countries
- Other effects of climate change?

OK but...

- Yes, climate change may be damaging to the economy (and beyond)
- We can mitigate/reduce emissions and green energy: David's lecture tomorrow
- We can adapt, e.g. by trading with cooler places: Joe's lecture on Thursday
- How to trade off damages, mitigation and adaptation?
 - Need to incorporate measures of the costs and benefits of all three
- Next: integrated framework to do just that
 - Due to Nordhaus (Nobel Prize 2018)
 - Today: will focus on damages

The Dynamic Integrated Climate Economy Model

Overview of DICE

- Block 1: Neoclassical Growth Model + energy use in production
 - Consumption and production generate carbon emissions
- Block 2: Climate
 - Carbon leads to changes in temperature
- Block 3: Damage functions
 - floods)...

Temperature affects productivity (heat stress), capital depreciation (storms,

Block 1: Households

- Household face time-varying interest rate r_t in period t
- Household then solves for optimal consumption path C_t :

$$\max_{c_0,c_1,\dots} U(c_0) + \beta U(c_1) + \beta^2 U(c_2) + \dots = \sum_{t=0}^{\infty} \beta^t U(c_t)$$
$$c_t + a_{t+1} = (1+r_t)a_t + w_t \qquad t = 0, 1, 2, \dots$$

Euler equation: How much to consume vs. save

$$U'(c_t) = \beta(1 + r_{t+1})$$

• Household earns wage w_t and accumulates a stock of savings a_t entering period t

Block 1: Firms

- Representative firm that, each period:
 - \bullet Rents capital K_t from households at rate r_t and covers depreciation δ
 - + Hires labor L_t the household at wage W_t
- Revenue production function $\tilde{Y} = \tilde{F}_t(K, L, K)$
- Solve out for energy use given K, L and obtain value added production function

•
$$Y = F_t(K, L) = \max_E \tilde{F}_t(K, L, E) - pE = \sum_E$$

• With effective capital share $\alpha = \alpha_0/(\alpha_0 + \lambda_0)$ and $\varepsilon = \gamma_0/(1 - \gamma_0)$

 \bullet Uses energy E_t at exogenous price p (can microfound with constant extraction cost)

$$E) = \gamma_0^{-\gamma_0} (1 - \gamma_0)^{-(1 - \gamma_0)} A_t^{1 - \gamma_0} K^{\alpha_0} L^{\lambda_0} E^{\gamma_0}$$

normalization damages CRS, Cobb-Douglas in K, L, E

 $p^{-\varepsilon}A_{\tau}K^{\alpha}L^{1-\alpha}$

Block 1: Firms

- Value added production function Y =
 - Now can use first-order optimality conditions

Capital demand

$$(r_t + \delta)K_t = \alpha Y_t$$

water is the second and the second the second and t

Man - 193 - 19 Topice History Asa Troughous and the wind the second a troughous and

$$F_t(K,L) = p^{-\varepsilon} A_t K^{\alpha} L^{1-\alpha}$$

Capital expenditures $\max_{K_t, L_t} F(K_t, L_t) - (r_t + \delta) K_t - w_t L_t$

wage payment

Labor demand

Energy demand (from revenue prod. func.)

$$(1-\alpha)Y_t$$

$$pE_t = \varepsilon Y_t$$

Block 2: Climate

Relate temperature to energy through the the carbon stock S and the carbon cycle

with the carbon stock

Here, stylized carbon cycle model for simplicity

See Dietz et al. (2021) for a review and more realistic carbon cycles models

 $S_{t+1} - \bar{S} = (1 - \delta_S)(S_t - \bar{S}) + E_t$

Accumulation equation Just like for capital!

 $\delta_{\rm S}$ governs how long carbon stays in the atmosphere (ocean & biosphere absorption) Typically 300-1000 years

Block 3: Damage Functions

- Productivity depends on temperature: $A_t \equiv A(T_t) = \overline{A} \exp(-a \times (T_t \overline{T}))$
- Reference temperature \overline{T} , e.g. pre-industrial level
- Productivity loss from deviating governed by $a \neq a$

General Equilibrium b/w Household, Firm.....

Neoclassical Growth Model

Neoclassical Growth Model

The Social Cost of Carbon

- The Social Cost of Carbon (SCC) is
 - \$ PDV of all present and future consumption losses caused by...
 - Emitting one ton of carbon today

SC

- Depends on the whole climate system and the whole economy over time
 - See Golosov et al. (2014) for closed-form expression in special case
- - \bullet Then directly specify a path $T_t T$ and abstract from carbon cycle block

$$CC_0 = \frac{1}{u'(c_0)} \frac{d}{dS_0} \left(\sum_{t=0}^{+\infty} \beta^t u(c_t) \right) = \sum_{t=0}^{+\infty} \beta^t \frac{u'(c_t)}{u'(c_0)} \frac{dc_t}{dS_0}$$

Local measure: \$ losses from a little bit more warming from a little more CO2

• Alternatively can evaluate the % loss in permanent consumption from a warming scenario

Estimating the Cost of Climate Change

Estimating Climate Change Damages

- Goal is to estimate damage function, i.e. a
- Traditional panel literature relies on local/country-level temperature T_{it}

$$y_{i,t} - y_{i,t-1} = \gamma_i + \eta_t + \phi T_{i,t} + v_{it}$$

• Estimate
$$a = \hat{\phi}$$

- Dell et al. (2012), Burke et al. (2015), Nath et al. (2023) use various refinements
- Can also trace out full dynamic impact rather than instantaneous impact

Local Temperature Implies Small Losses

Real GDP

Source: Bilal Känzig (2024)

- Find $a \approx 0.01$ per degree C
- 1% productivity loss per degree C
- Fairly small effects

10

Global vs. Local Temperature

- Local temperature does not fully represent climate change
 - Excludes oceanic warming, storm formation, etc.
- Instead, Bilal Känzig (2024) use global mean temperature as the shock
 Closer proxy of climate change

$$y_{i,t} - y_{i,t-1} = \gamma_i + \phi(T_t - \overline{T}) + \mathbf{Controls}_t + \tilde{v}_{it}$$

- Exclude the time fixed effect, can replace with global controls
- Again trace out full response instead of instantaneous impact

Global Temperature Implies Large Losses

Real GDP

Source: Bilal Känzig (2024)

- Find $a \approx 0.05$ per degree C
- 5% productivity loss per degree C
- Five-six times larger effects!
- Show because more extreme events
- Also important to account for persistence
 - Nath et al. (2023), Bilal Känzig (2024)

10

The SCC and Welfare in DICE

Source: Bilal Känzig (2024)

(f) SCC in 2024 (\$) 15001000500

- SCC above \$1,000/ton
- Welfare loss of 31%
- Output falls 50% by 2100

Conclusion

- - Causes economic losses
- Saw the workhorse climate-economy model: **DICE!**
 - NGM model with an energy and climate block
 - Defined the Social Cost of Carbon
- Climate damages are large when looking at global mean temperature
- **Next lectures**
 - How can we reduce emissions? David
 - How can we adapt to climate change through trade? Joe

• Energy is critical for growth, but GHG emissions cause rising global temperatures

35