Should Appropriate Technology Be Revived?

Fabrizio Zilibotti

Yale University

IEA, February 2022

Fabrizio Zilibotti (Yale University)

Inappropriate Technologies

3

▶ < ∃ >

Image: A 1 → A

Gradual Adoption of Inappropriate Technologies

- AZ (2001): a theory of (in)appropriate technologies can account for a significant share of international productivity differences.
 - Theory: the technology leader(s) innovate(s); the rest of the world immediately adopts at zero cost.
- Today: A framework in which *frontier* technologies are first introduced in advanced economies and then *gradually* adopted by developing economies.
 - ▶ In line with the lessons from Grilliches (1957).
 - Based on joint research with Gino Gancia and Andreas Mueller.
- Horse race between inappropriate technology and barriers to adoption.

< 回 ト < 三 ト < 三 ト

Innovation and Adoption I

• A CES aggregate production function:

$$Y_{c} = K_{c}^{\alpha} \left(\left[\left(N_{Lc} L_{c} \right)^{\frac{\sigma-1}{\sigma}} + \left(N_{Hc} H_{c} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} \right)^{1-\alpha},$$

- K is capital, H high-skill labor, L low-skill labor and $\sigma > 1$.
- An advanced economy (the North) pushes ahead the world technology frontier (*N*_L, *N*_H).
- Innovators can only sell new technologies to firms in the North —e.g., because of weak international IPR protection.

Innovation and Adoption II

- Southern countries *adopt* factor-specific technologies at a cost that is decreasing in their distance from the frontier.
- Technology adoption—like innovation—is profit-driven.
- The technology *menu* can be inappropriate to local endowment of complementary factors (capital, skills, land soil, weather, etc.).

The Endogenous Skill Bias of Technology I

• The skill bias of the world technology (N_H/N_L) compatible with balanced growth is as in AZ 2001:

$$\frac{N_{HN}}{N_{LN}} \propto \left(\frac{H_N}{L_N}\right)^{\sigma-1}$$

• For Southern firms, the cost of adoption is a decreasing function of the distance to frontier:

$$c_L = rac{1}{\eta} \left(rac{N_{LN}}{N_{LS}}
ight)^{-\xi}$$
 and $c_H = rac{1}{\eta} \left(rac{N_{HN}}{N_{HS}}
ight)^{-\xi}$, $\xi \geq 0$.

 ξ is an inverse measure of barriers to technology adoption in the South.

The Endogenous Skill Bias of Technology II

• The steady-state equilibrium pins down the skill bias of technology in the South:

$$\frac{N_{HS}}{N_{LS}} \propto \left[\left(\frac{H_S}{L_S} \right) \left(\frac{H_N}{L_N} \right)^{\sigma\xi} \right]^{\frac{\sigma-1}{1+\sigma\xi}}$$

- Technology adoption in the South depends on the skill endowment both in the North and in the South.
 - A high skill endowment in the North means that skill-complement innovations are abundant and therefore cheap to adopt.
 - A low skill endowment in the South weakens incentive to adopt skill-complement innovations.
- The skill-bias of the Southern technology, N_{HS} / N_{LS}, is increasing in ξ, i.e., decreasing in barriers.

The Endogenous Skill Bias of Technology III

- Extreme cases:
 - If ζ → 0 (prohibitive barriers) the South develops technologies independently from the North:

$$\frac{N_{HS}}{N_{LS}} \propto \left[\frac{H_S}{L_S}\right]^{\sigma-1}$$

 If ξ → ∞ adoption is free (no barriers) so that the South is using the same technology as the North. This is the case studied by Acemoglu and Zilibotti (QJE 2001).

$$\frac{N_{HS}}{N_{LS}} \rightarrow \frac{N_{HN}}{N_{LN}} \propto \left[\frac{H_N}{L_N}\right]^{\sigma-1}$$

The Structural Equation I

• For any "southern country", the output relative to the frontier is

$$\frac{Y_{S}}{Y_{N}} = \left(\left(\frac{K_{S}}{K_{N}} \right)^{\alpha} \left[\frac{L_{S}^{\beta} + \left(Z \frac{H_{N}}{L_{N}} \right)^{\frac{\zeta(\sigma-1)}{1+\zeta}\beta} (ZH_{S})^{\beta}}{L_{N}^{\beta} + \left(Z \frac{H_{N}}{L_{N}} \right)^{\frac{\zeta(\sigma-1)}{1+\zeta}\beta} (ZH_{N})^{\beta}} \right]^{\frac{1-\alpha}{\beta}} \right)^{\frac{1+\zeta}{\alpha+\zeta}}$$

where

$$\beta \equiv \frac{(\sigma - 1)(1 + \xi)}{1 + \sigma \xi}$$

• The quantitative analysis is based on a mixture of calibration and estimation of this equation.

The Structural Equation II

Figure 2: Baseline estimation: GDP pw (log-difference from the US)

- 4 同 1 4 回 1 4 回 1

What Do We Learn? I

- The model accurately fits the international data;
- Estimated barriers to technology adoption are important, especially for the poorest countries;
- However, inappropriate technology are even more important—reducing skill mismatch (education gap) has a larger effect than in standard development accounting exercise (a double dividend)
- Ounterfactual analysis:
 - Cutting barriers to technology adoption;
 - Reducing trade frictions.

Changes in Inequality I

- If we remove barriers to technology adoption (↑ ξ), all countries use the same technology.
 - ► For the followers, technology becomes more skill biased.
 - Therefore, inequality goes up in developing economies.

Changes in Inequality II

- 一司

Changes in Inequality III

- For trade liberalization, two opposite effects (in the Sotuh):
 - the skill premium falls because of a Stolper-Samuelson effect;
 - the skill premium increases due to the increase in the skill bias of technical change in the North.
- Calibrated economies: wage inequality increases in most countries after trade liberalization.
 - Exceptions: a few (sub-Saharan) countries.
 - Inequality rises sharply in India and China.

Changes in Inequality IV

IEA, February 2022 14 / 15

< 一型

Themes for Debate & Future Research I

- Recent technologies may be *very* inappropriate (e.g., labor-saving robots)
 - distributional effects dominate over efficiency gains?
- Recently, many developing economies are growing without industrializing (*service-led growth*).
 - Are technology in service sector more portable?
- China is becoming a new innovation powerhouse.
 - Does it make a difference either way?
- Is there a case for local development of new technologies?
 - Problem: market size, efficiency of local innovation.